Skip to main content

ऑक्सीकरण एवं अवकरण (Oxidation and degradation)

 

ऑक्सीकरण एवं अवकरण (Oxidation and degradation)


ऑक्सीकरण (Oxidation)- ऑक्सीकरण वह रासायनिक प्रक्रिया है, जिसके फलस्वरूप किसी तत्व या यौगिक में विद्युत् ऋणात्मक परमाणुओं या मूलकों का अनुपात बढ़ जाता है अथवा किसी यौगिक में विद्युत् धनात्मक परमाणुओं या मूलकों का अनुपात कम हो जाता है।

उदाहरण-

2Mg + O2 → 2MgO

C + O2 → CO2

2H2 + O2 → 2H2O

Cu + Cl2 → CuCl2,

H2 + I2 → 2HI


2FeCl2 + Cl2 → 2FeCl3

अवकरण (Reduction): अवकरण वह रासायनिक प्रक्रिया है, जिसके फलस्वरूप किसी तत्व या यौगिक में विद्युत् धनात्मक परमाणुओं या मूलकों का अनुपात बढ़ जाता है अथवा किसी यौगिक में विद्युत् ऋणात्मक परमाणुओं या मूलकों का अनुपात कम हो जाता है।

उदाहरण-

Cl2 + H2S → 2HCl + S

2FeCl3 + 2 FeCl2 + 2HCl

आयनिक सिद्धान्त के आधार पर ऑक्सीकरण एवं अवकरण की परिभाषा

ऑक्सीकरण (Oxidation): ऑक्सीकरण वह प्रक्रिया है, जिसके फलस्वरूप किसी आयन पर धन आवेश बढ़ जाता है या ऋण आवेश कम हो जाता है।

उदाहरण- फेरस क्लोराइड (FeCl2) से फेरिक क्लोराइड (FeCl3) के बनने में फेरस आयन (Fe++) बदलकर फेरिक आयन (Fe+++) हो जाता है। अर्थात् लोहे के आयन पर धन आवेश बढ़ जाता है।

FeCl2 → FеCl3

Fe++ + CI- + CI- → Fe+++ + Cl- + Cl- + CI-

अवकरण (Reduction): अवकरण वह रासायनिक प्रक्रिया है, जिसके फलस्वरूप किसी आयन पर धन आवेश घट जाता है, या ऋण आवेश बढ़ जाता है।

उदाहरण- SnCl4 से SnCl2 के बनने में टिन आयन पर धन आवेश +4 से घटकर +2 हो। जाता है।

SnCl4 → SnCl2

Sn+++ + 4Cl → Sn++ + 2Cl-

इलेक्ट्रॉनिक सिद्धांत के आधार पर ऑक्सीकरण एवं अवकरण की परिभाषा

ऑक्सीकरण (Oxidation): ऑक्सीकरण वह रासायनिक प्रक्रिया है, जिसमें कोई परमाणु या आयन एक या अधिक इलेक्ट्रॉनों का त्याग कर उच्च विद्युत् धनात्मक अवस्था या निम्न विद्युत् ऋणात्मक अवस्था में परिवर्तित होता है।

अवकरण (Reduction): अवकरण वह रासायनिक प्रक्रिया है, जिसमें कोई परमाणु या आयन इलेक्ट्रॉन ग्रहण करके निम्न विद्युत् धनात्मक अवस्था या उच्च विद्युत् ऋणात्मक अवस्था में परिवर्तित होता है।

उदाहरण- सोडियम धातु एवं क्लोरीन गैस के बीच अभिक्रिया के फलस्वरूप सोडियम क्लोराइड बनता है।

2Na + Cl2 → 2NaCl

ऑक्सीकारक एवं अवकारक पदार्थ (Oxidising and Reducing Agent): जिस पदार्थ का ऑक्सीकरण होता है, वह अवकारक (Reducing Agent) कहलाता है, तथा जिस पदार्थ का अवकरण होता है, वह ऑक्सीकारक (Oxidising Agent) कहलाता है।

ऑक्सीकारक वे पदार्थ होते हैं, जो इलेक्ट्रॉन ग्रहण करते हैं तथा अवकारक वे पदार्थ होते हैं, जो इलेक्ट्रॉन त्याग करते हैं। कुछ मुख्य ऑक्सीकारक पदार्थ निम्नलिखित हैं- ऑक्सीजन (O2), ओजोन (O3), हाइड्रोजन परऑक्साइड (H2O2), नाइट्रिक अम्ल (HNO3), क्लोरीन (Cl2), पोटैशियम परमैंगनेट (KMnO4), पोटैशियम डाइक्रोमेट (K2Cr2O7), लेड ऑक्साइड (PbO2) आदि।

कुछ मुख्य अवकारक पदार्थ के उदाहरण हैं- हाइड्रोजन (H2), हाइड्रोजन सल्फाइड (H2S), कार्बन मोनोक्साइड (CO), सल्फर डाइऑक्साइड (SO2), कार्बन (C), हाइड्रायोडिक अम्ल (HI), स्टैनस क्लोराइड (SnCl2) आदि।

ऑक्सीकारक एवं अवकारक दोनों की तरह व्यवहार करने वाले पदार्थ: हाइड्रोजन सल्फाइड (H2S), हाइड्रोजन परऑक्साइड (H2O2), सल्फर डाइऑक्साइड (SO2), नाइट्रस अम्ल (HNO2) आदि।

ऑक्सीकरण संख्या (Oxidation Number): किसी तत्व की ऑक्सीकरण संख्या वह संख्या है, जो किसी अणु आयन में उस परमाणु पर आवेशों की संख्या को बताती है, यदि उस अणु या आयन से शेष सभी परमाणुओं को संभावित आयनों के रूप में अलग कर दिया जाय। उदाहरणार्थ- KMnO4 के अणु से पोटैशियम को K+ के रूप में और चार ऑक्सीजन को O-- के रूप में अलग कर दिया जाय, तो Mn पर +7 आवेश बचेगा। यही Mn की ऑक्सीकरण संख्या है। ऑक्सीकरण संख्या का मान धनात्मक या ऋणात्मक हो सकता है।

ऑक्सीकरण संख्या के आधार पर ऑक्सीकरण एवं अवकरण की व्याख्या: ऑक्सीकरण वह रासायनिक प्रक्रिया है, जिसके फलस्वरूप किसी परमाणु की ऑक्सीकरण संख्या का मान बढ़ जाता है, तथा अवकरण वह रासायनिक प्रक्रिया है, जिसके फलस्वरूप किसी परमाणु की ऑक्सीकरण संख्या घट जाती है।

उदाहरण-

Fe (0) + 2HCl (+1) → (+2) FeCl2 + H2

यहाँ लोहे की ऑक्सीकरण संख्या शून्य से बढ़कर +2 हो रही है, जबकि हाइड्रोजन की ऑक्सीकरण संख्या +1 से घटकर शून्य हो रही है। अतः इस प्रतिक्रिया में लोहे का ऑक्सीकरण तथा हाइड्रोजन का अवकरण हुआ है।

ऑक्सीकारक वह पदार्थ है, जो किसी दूसरे पदार्थ की ऑक्सीकरण संख्या को बढ़ा देता है। जबकि अवकारक वह पदार्थ है, जो किसी दूसरे पदार्थ की ऑक्सीकरण संख्या को घटा देता है।

जिस पदार्थ की ऑक्सीकरण संख्या बढ़ती है, वह ऑक्सीकृत होता है, अर्थात् वह अवकारक (Reducing Agent) है।

जिस पदार्थ की ऑक्सीकरण संख्या घटती है वह अवकृत होता है, अर्थात् वह ऑक्सीकारक (Oxidising Agent) है।



  • परमाणु संरचना (Atomic structure)
  • गैसों के नियम (Gases law)
  • तत्वों का आवर्त वर्गीकरण (Periodic classification of elements)
  • रासायनिक बंधन (Chemical bond)
  • ऑक्सीकरण एवं अवकरण (Oxidation and degradation)
  • अम्लक्षार एवं लवण (Acids, Bases and Salts)
  • विलयन (solution)
  • कार्बन तथा उसके यौगिक (Carbon and its compounds)
  • ईंधन के प्रकार (Types of fuel)
  • उत्प्रेरक क्या है? what is Catalyst ?
  • धातु और गैर धातु क्या है ? what is Metals and non metals
  • मानव निर्मित पदार्थ ? Man made material ?
  • रसायन विज्ञान की महत्वपूर्ण प्रश्न उत्तर  (Important Chemistry Questions)
  • अन्य जानकारी

    Comments

    Popular posts from this blog

    धातु और गैर धातु क्या है ? What is metals and non metals ?

    धातु और गैर धातु क्या है ? what is Metals and non metals? धातु सायनशास्त्र के अनुसार धातु (metals) वे तत्व हैं जो सरलता से इलेक्ट्रान त्याग कर धनायन बनाते हैं और धातुओं के परमाणुओं के साथ धात्विक बंध बनाते हैं। इलेक्ट्रानिक मॉडल के आधार पर, धातु इलेक्ट्रानों द्वारा आच्छादित धनायनों का एक लैटिस हैं। धातुओं की पारम्परिक परिभाषा उनके बाह्य गुणों के आधार पर दी जाती है। सामान्यतः धातु चमकीले, प्रत्यास्थ, आघातवर्धनीय और सुगढ होते हैं। धातु उष्मा और विद्युत के अच्छे चालक होते हैं जबकि अधातु सामान्यतः भंगुर, चमकहीन और विद्युत तथा ऊष्मा के कुचालक होते हैं। रासायनिक तत्वों को सर्वप्रथम धातुओं और अधातुओं में विभाजित किया गया, यद्यपि दोनों समूहों को बिल्कुल पृथक्‌ नहीं किया जा सकता था। धातु की परिभाषा करना कठिन कार्य है। मोटे रूप से हम कह सकते हैं कि यदि किसी तत्व में निम्नलिखित संपूर्ण या कुछ गुण हों तो उसे धातु कहेंगे : चमक, परांधता, साधारण ताप पर ठोस, स्वच्छ सतह द्वारा प्रकाश के परावर्तन (Reflection) का गुण, ऊष्मा एवं विद्युत्‌ की उत्तम चालकता, एवं द्रव अवस्था से ठंण्डा करने पर क्रिस्टल रूप में

    परमाणु संरचना (Atomic structure)

      परमाणु संरचना (Atomic structure)      परमाणु, तत्व का वह सबसे छोटा कण है, जो किसी रासायनिक क्रिया में भाग ले सकता है लेकिन स्वतंत्र रूप से नहीं रह सकता है | द्रव, ठोस व गैस सभी पदार्थों का निर्माण परमाणुओं (Atoms) से ही होता है | परमाणु आपस में मिलकर अणुओं (Molecules) का निर्माण करते हैं | तत्व या यौगिक का वह सबसे छोटा कण है, जो स्वतंत्र अवस्था में रह सकता है अणु कहलाता है | परमाणु, तत्व का वह सबसे छोटा कण है, जो किसी रासायनिक क्रिया में भाग ले सकता है लेकिन स्वतंत्र रूप से नहीं रह सकता है | द्रव, ठोस व गैस सभी पदार्थों का निर्माण परमाणुओं (Atoms) से ही होता है | परमाणु आपस में मिलकर अणुओं (Molecules) का निर्माण करते हैं | तत्व या यौगिक का वह सबसे छोटा कण है, जो स्वतंत्र अवस्था में रह सकता है अणु कहलाता है | परमाणु ग्रीक भाषा का शब्द है जिसका मतलब होता है “जिसे तोडा न जा सके ” , क्योंकि जब परमाणु की खोज हुई थी तब इसे सबसे छोटा कण माना गया था और माना गया था की परमाणु को तोडा नहीं जा सकता अर्थात इसी से सब चीजो का निर्माण हुआ है , यह सबसे छोटी इकाई माना गया। लेकिन बाद में जब इलेक्ट्रान

    गैसों के नियम (Gases law)

      गैसों के नियम (Gases law)      गैसों के नियम , आदर्श गैस का नियम : अलग अलग वैज्ञानिकों ने अलग अलग प्रयोग किये और अपने प्रयोगों के आधार पर गैसों के लिए अलग अलग नियम दिए और ये नियम गैस के लिए अलग अलग राशि पर आधारित है अर्थात कुछ नियम गैस के लिए दाब से सम्बंधित है , कुछ नियम गैस के लिए आयतन और कुछ ताप से सम्बन्धित है। एवोगेड्रो का नियम इस नियम में बताया गया कि सभी आदर्श गैस समान ताप एवं दाब पर सभी गैसों के समान आयतन में अणुओं की संख्या समान होती है. इस नियम को 1811 में इटालियन रसायन वैज्ञानिक Amedeo Avogadro ने बताया था. बॉयल का नियम स्थिर ताप किसी भी गैस की निश्चित मात्रा का आयतन उसके दाब के व्युँताक्र्मानुपाती होता है. स्थिर ताप पर गैस का दाब बढ़ाने पर आयतन घटता है और दाब घटाने पर आयतन बढ़ता है. इस नियम को R. Boyle ने 1662 में बताया था और इसके बाद में 1676 में E. Mariotte ने भी इसके बारे में जिक्र किया चार्ल्स का नियम स्थिर ताप पर किसी भी गैस के निश्चित मात्रा का आयतन उसके परमताप के अनुक्रमानुपाती होता है. (परमताप T= 273० +t०C ). स्थिर ताप पर यदि गैस का ताप बढ़ाया जाए तो उसका आयतन बढ़

    उत्प्रेरक क्या है? what is Catalyst ?

      उत्प्रेरक क्या है? what is Catalyst ? उत्प्रेरक का अर्थ या परिभाषा: उत्प्रेरक उस पदार्थ को कहते हैं जो किसी रासायनिक क्रिया के वेग को बदल दे, परंतु स्वयं क्रिया के अंत में अपरिवर्तित रहता है, अत: उसे पुन: काम में लाया जा सकता है। अधिकांश क्रियाओं में उत्प्रेरक प्रतिक्रिया की गति को बढ़ा देता है। ऐसे उत्प्रेरकों को धनात्मक उत्प्रेरक कहते है; परंतु कुछ ऐसे भी उत्प्रेरक है जो रासायनिक क्रिया की गति को मंद कर देते हैं। ऐसे उत्प्रेरक ऋणात्मक उत्प्रेरक कहलाते हैं। औद्योगिक रूप से महत्वपूर्ण रसायनों के निर्माण में उत्प्रेरकों की बहुत बड़ी भूमिका है क्योंकि इनके प्रयोग से अभिक्रिया की गति बढ जाती है जिससे अनेक प्रकार से आर्थिक लाभ होता है और उत्पादन तेज होता है। इसलिये उत्प्रेरण के क्षेत्र में अनुसंधान के लिये बहुत सा धन एवं मानव श्रम लगा हुआ है। उत्प्रेरक की मुख्य विशेषताएँ निम्नलिखित हैं: क्रिया के अंत में उत्प्रेरक अपरिवर्तित बच रहता है। उसके भौतिक संगठन में चाहे जो परिवर्तन हो जाएँ, परंतु उसके रासायनिक संगठन में कोई अंतर नहीं होता। उत्प्रेरक पदार्थ की केवल थोड़ी मात्रा ही पर्याप्त होती ह

    मानव निर्मित पदार्थ ? Man made material ?

      मानव निर्मित पदार्थ ? Man made material ? साबुन उच्च वसीय अम्लों के सोडियम और पोटेशियम लवण है. साबुनीकरण के द्वारा बनते हैं. उदाहरण- सोडियम पालीमटेट, सोडियम स्टीएरेट, आदि. अपमार्जक लंबी श्रंखला वाले एलिक्ल या एरिल स्ल्फेनेटों या सल्फेट के सोडियम तथा पोटेशियम लवण होते हैं. उदाहरण- सोडियम एलिक्ल स्ल्फोनेट,सोडियम एलिक्ल बेंजीन, स्ल्फोनेट, आदि. धनायनिक अपमार्जक का प्रयोग कपड़ो को मुलायम रखने के लिए तथा जर्मनाशी के रूप में किया जाता है, जबकि अनायनिक अपमार्जक द्रव डिश वॉशिंग में प्रयोग में लाए जाते हैं. अपमार्जक, कठोर जल के साथ भी झाग उत्पन्न करते हैं. औषधियां निश्चेतक इसका प्रयोग मुख्यतः संवेदना को कम करने के लिए किया जाता है. इस का सर्वप्रथम प्रयोग को वर्ष 1946 में डाई एथिल ईथर के रूप में किया गया. 1847 ईसवी में जेम्स सिंपसन द्वारा निश्चेतक के रूप में क्लोरोफार्म का प्रयोग किया गया. प्रमुख निश्चेतक क्लोरो प्रोपेन, कोकीन, हेलोथैंन, डाई एथिल ईथर. एंटी सेप्टिक यह सूक्ष्म जीवाणुओं को मारने व उनकी वृद्धि रोकने में सहायक होती है. प्रमुख एंटीसिपेट्रीक आयोडीन, फिनोल. एंटीपायरटिक्स इनका प्रयोग शर

    अम्ल, क्षार एवं लवण (Acids, Bases and Salts)

      अम्ल, क्षार एवं लवण (Acids, Bases and Salts) किसी भी भोजन का अच्छा स्वाद हमारे जिंदगी को भी स्वादिष्ट बना देता है। सभी प्रकार के भोजन में कोई न कोई taste अवश्य होता है। ये स्वाद या तो खट्टे, मीठे या नमकीन होते हैं। भोजन में खट्टेपन का स्वाद उसमें Acid की उपस्थिति के कारण होता है, जबकि भोजन का नमकीन स्वाद उसमें उपस्थित Salt के कारण होता है। Cold drinks का bitter स्वाद उसमें उपस्थित Base के कारण होता है। अर्थात भोजन का तरह तरह का स्वाद उसमें acid, salt, या base की उपस्थिति के कारण होता है। Acids (अम्ल) Acids का स्वाद खट्टा (sour) होता है। इसी कारण भोजन या फल का स्वाद खट्टा होने का कारण उसमें acids की मौजूदगी के कारण होता है। Example (उदाहरण): Lemon (नींबु), curd (दही), tamarind (ईमली), unripe fruits (कच्चे फल) आदि कुछ सामान्य भोज्य पदार्थ हैं, जो प्राय: रोज घरों में उपयोग किये जाते हैं। इन सभी का स्वाद खट्टा होता है क्योंकि इन सभी में acid (अम्ल) पाये जाते हैं। रासायनिक पदार्थ जिन्हें उनके खट्टे स्वाद के कारण पहचाना जा सकता है, अम्ल (ACID) कहलाते हैं। Types of Acids: (अम्ल के प्रकार) श

    रासायनिक बंधन क्या होता है ? यहाँ जाने | what is Chemical bond ? Know here

      रासायनिक बंधन (Chemical bond) किसी अणु में परमाणुओं को बांधकर एक साथ रखने वाले बल को रासायनिक बंधन (Chemical bonding) कहते हैं जैसे हाइड्रोजन के दो परमाणु ऑक्सीजन की एक परमाणु के साथ रासायनिक बंध द्वारा जुड़कर जल का निर्माण करता है। रसायनिक बंधन की व्याख्या 1916 में Walther Kossel और Gilbert N. Lewis के द्वारा किया गया। Chemical Bond तीन प्रकार के होते होते हैं 1. विद्युत संयोजक बंध (Electrovalent bond) दो परमाणुओं के मध्य इलेक्ट्रॉन की स्थांतरण से बने बंध को electrovalent bond कहते हैं। यह विद्युत संयोजक बंधन और ऋण आवेश से बने होते हैं, द्रवणांक और क्वथनांक उच्च होता है, विद्युत आकर्षण बल से जुड़े होते हैं, ठोस अवस्था में विद्युत का कुचालक होते हैं विद्युत संयोजक बंध दिशाहीन होते हैं, जल में घुलनशील होते हैं, परंतु कार्बनिक घोल में अघुलनशील होते हैं तथा बहुत ही तेजी से रासायनिक अभिक्रिया में भाग लेते हैं। 2. सहसंयोजक बंध ( Covalent bond ) ऐसा रसायनिक बंधन जिनका निर्माण दो परमाणुओं के बीच इलेक्ट्रॉन के साझेदारी के कारण होता है उन्हें co-valent bond कहते हैं। जब दो परमाणुओं के बीच परम

    ईंधन के प्रकार कौन कौन से होते है ? (Types of fuel)

      ईंधन के प्रकार (Types of fuel) ईंधन (अंग्रेज़ी:Fuel) वह पदार्थ है जो हवा में जलकर बगैर अनावश्यक उतपाद के ऊष्मा उत्पन्न करता है। एक अच्छे ईंधन के निम्नमिखित गुण होने चाहिए - वह सस्ता एवं आसानी से उपलब्ध होना चाहिए। उसका ऊष्मीय मान उच्च होना चाहिए। जलने के बाद उससे अधिक मात्रा में अवशिष्ट होना चाहिए। जलने के दौरान या बाद कोई हानिकारक पदार्थ नहीं होना चाहिए। उसका जमाव, परिवह्न आसान होना चाहिए। उसका जलना नियंत्रित होना चाहिए। उसका प्रज्वलन ताप निम्न होना चाहिए। मुख्यतः तीन प्रकार के ईंधन ठोस ईंधन ये ईंधन ठोस रूप में होते हैं तथा जलाने पर कार्बन हाइड्रोक्साइड, कार्बन मोनो ऑक्साइड व ऊष्मा उत्पन करते हैं। लकड़ी, कोयला, कोक आदि ठोस ईंधन के उदाहरण है। कोयला कार्बन की मात्रा के आधार पर कोयला चार प्रकार का होता हैं - पीट कोयला :-  इसमें कार्बन की मात्रा 50% से 60% तक होती है। इसे जलाने पर अधिक राख एवं धुआँ निकलता है। यह सबसे निम्न कोटि का कोयला है। लिग्नाइट कोयला :-  कोयला इसमें कार्बन की मात्रा 65% से 70% तक होती है। इसका रंग भूरा होता है, इसमें जलवाष्प की मात्रा अधिक होती है। बिटुमिनस कोयला

    तत्वों का आवर्त वर्गीकरण (Periodic classification of elements)

      तत्वों का आवर्त वर्गीकरण (Periodic classification of elements) आवर्ती वर्गीकरण ( Periodic Classification):  किसी मौलिक गुण को आधार बनाकर की गई पदार्थों की ऐसी व्यवस्था जिसमें निश्चित अंतराल के बाद समान गुण वाले पदार्थ पुनः उपस्थित हों, आवर्ती व्यवस्था या आवर्ती वर्गीकरण कहलाती है। तत्वों के वर्गीकरण का मुख्य उद्देश्य समान गुणों वाले तत्वों को एक वर्ग में रखकर रसायनशास्त्र के अध्ययन को सरल, सुविधाजनक, सुस्पष्ट एवं क्रमबद्ध बनाना है। तत्वों के वर्गीकरण का इतिहास:   19वीं शताब्दी में तत्वों के वर्गीकरण के कई प्रयास किये गए जिनमें प्राउट की परिकल्पना, डोबरेनर का त्रिक सिद्धांत, डूमा की सममूलक श्रेणी, न्यूलैण्डस का अष्टक नियम, लोथर-मेयर का परमाणु आयतन तथा परमाणु भार वक्र, मेडलीफ का आवर्त नियम आदि प्रमुख हैं। तत्वों के वर्गीकरण के इन प्रारम्भिक प्रयासों में तत्वों के परमाणु भार (Atomic weight) को वर्गीकरण का आधार बनाया गया। लेकिन  डोबरेनर  का  त्रिक सिद्धांत  कुछ ही तत्वों तक सीमित रहने के कारण विश्वव्यापी मान्यता प्राप्त नहीं कर सका। अतः कुछ समय पश्चात् तत्वों के वर्गीकरण की यह पद्धति त्य

    रसायन विज्ञान की महत्वपूर्ण प्रश्न उत्तर (Important Chemistry Questions)

      रसायन विज्ञान की महत्वपूर्ण प्रश्न उत्तर  (Important Chemistry Questions) 1. आतिशबाजी में हरा रंग किसकी उपस्थिति के कारण होता है. उत्तर. बेरियम 2. कौन-सी धातु रोशनी के बल्बों के फिलामेंट के रूप में प्रयुक्त होती है . उत्तर. टंगस्टन 3. सामान्य ट्यूबलाइट (प्र्तिदिप्ती बल्ब ) में ऑर्गन के साथ कौन-सी गैस भरी जाती है . उत्तर. मरकरी वेपर 4. संस्पर्श प्रक्रम में किसको एक उत्प्रेरक के रूप में प्रयोग किया जाता है . उत्तर. वैनेडियम पेंटाक्साइड 5. कृतकनाशी (रोडेंटनाशी) में किसका प्रयोग किया जाता है . उत्तर. जिंक फॉस्फाइड 6. क्लोरीन हैलोजन सदस्य का उपयोग किसके रूप में होता है. उत्तर. कीटाणुनाशक 7. किस विधि द्वारा औद्योगिक पैमाने पर अमोनिया का उत्पादन किया जाता है. उत्तर. हैबर विधि 8. किसने सर्वप्रथम आवर्त सारणी का निर्माण किया. उत्तर. मेंडेलीफ वैज्ञानिक 9. नाभिक से निकलने वाले विकिरणों में किसकी वेधन क्षमता सर्वाधिक होती है. उत्तर. गामा किरणों 10. फोटोग्राफी में किस योगिक प्रयोग किया जाता है. उत्तर. सिल्वर ब्रोमाइड रासायनिक 11. कृत्रिम वर्षा कराने में किसका प्रयोग किया जाता है. उत्तर. सिल्वर आयो

    Popular posts from this blog

    धातु और गैर धातु क्या है ? What is metals and non metals ?

    धातु और गैर धातु क्या है ? what is Metals and non metals? धातु सायनशास्त्र के अनुसार धातु (metals) वे तत्व हैं जो सरलता से इलेक्ट्रान त्याग कर धनायन बनाते हैं और धातुओं के परमाणुओं के साथ धात्विक बंध बनाते हैं। इलेक्ट्रानिक मॉडल के आधार पर, धातु इलेक्ट्रानों द्वारा आच्छादित धनायनों का एक लैटिस हैं। धातुओं की पारम्परिक परिभाषा उनके बाह्य गुणों के आधार पर दी जाती है। सामान्यतः धातु चमकीले, प्रत्यास्थ, आघातवर्धनीय और सुगढ होते हैं। धातु उष्मा और विद्युत के अच्छे चालक होते हैं जबकि अधातु सामान्यतः भंगुर, चमकहीन और विद्युत तथा ऊष्मा के कुचालक होते हैं। रासायनिक तत्वों को सर्वप्रथम धातुओं और अधातुओं में विभाजित किया गया, यद्यपि दोनों समूहों को बिल्कुल पृथक्‌ नहीं किया जा सकता था। धातु की परिभाषा करना कठिन कार्य है। मोटे रूप से हम कह सकते हैं कि यदि किसी तत्व में निम्नलिखित संपूर्ण या कुछ गुण हों तो उसे धातु कहेंगे : चमक, परांधता, साधारण ताप पर ठोस, स्वच्छ सतह द्वारा प्रकाश के परावर्तन (Reflection) का गुण, ऊष्मा एवं विद्युत्‌ की उत्तम चालकता, एवं द्रव अवस्था से ठंण्डा करने पर क्रिस्टल रूप में

    गैसों के नियम (Gases law)

      गैसों के नियम (Gases law)      गैसों के नियम , आदर्श गैस का नियम : अलग अलग वैज्ञानिकों ने अलग अलग प्रयोग किये और अपने प्रयोगों के आधार पर गैसों के लिए अलग अलग नियम दिए और ये नियम गैस के लिए अलग अलग राशि पर आधारित है अर्थात कुछ नियम गैस के लिए दाब से सम्बंधित है , कुछ नियम गैस के लिए आयतन और कुछ ताप से सम्बन्धित है। एवोगेड्रो का नियम इस नियम में बताया गया कि सभी आदर्श गैस समान ताप एवं दाब पर सभी गैसों के समान आयतन में अणुओं की संख्या समान होती है. इस नियम को 1811 में इटालियन रसायन वैज्ञानिक Amedeo Avogadro ने बताया था. बॉयल का नियम स्थिर ताप किसी भी गैस की निश्चित मात्रा का आयतन उसके दाब के व्युँताक्र्मानुपाती होता है. स्थिर ताप पर गैस का दाब बढ़ाने पर आयतन घटता है और दाब घटाने पर आयतन बढ़ता है. इस नियम को R. Boyle ने 1662 में बताया था और इसके बाद में 1676 में E. Mariotte ने भी इसके बारे में जिक्र किया चार्ल्स का नियम स्थिर ताप पर किसी भी गैस के निश्चित मात्रा का आयतन उसके परमताप के अनुक्रमानुपाती होता है. (परमताप T= 273० +t०C ). स्थिर ताप पर यदि गैस का ताप बढ़ाया जाए तो उसका आयतन बढ़

    परमाणु संरचना (Atomic structure)

      परमाणु संरचना (Atomic structure)      परमाणु, तत्व का वह सबसे छोटा कण है, जो किसी रासायनिक क्रिया में भाग ले सकता है लेकिन स्वतंत्र रूप से नहीं रह सकता है | द्रव, ठोस व गैस सभी पदार्थों का निर्माण परमाणुओं (Atoms) से ही होता है | परमाणु आपस में मिलकर अणुओं (Molecules) का निर्माण करते हैं | तत्व या यौगिक का वह सबसे छोटा कण है, जो स्वतंत्र अवस्था में रह सकता है अणु कहलाता है | परमाणु, तत्व का वह सबसे छोटा कण है, जो किसी रासायनिक क्रिया में भाग ले सकता है लेकिन स्वतंत्र रूप से नहीं रह सकता है | द्रव, ठोस व गैस सभी पदार्थों का निर्माण परमाणुओं (Atoms) से ही होता है | परमाणु आपस में मिलकर अणुओं (Molecules) का निर्माण करते हैं | तत्व या यौगिक का वह सबसे छोटा कण है, जो स्वतंत्र अवस्था में रह सकता है अणु कहलाता है | परमाणु ग्रीक भाषा का शब्द है जिसका मतलब होता है “जिसे तोडा न जा सके ” , क्योंकि जब परमाणु की खोज हुई थी तब इसे सबसे छोटा कण माना गया था और माना गया था की परमाणु को तोडा नहीं जा सकता अर्थात इसी से सब चीजो का निर्माण हुआ है , यह सबसे छोटी इकाई माना गया। लेकिन बाद में जब इलेक्ट्रान

    तत्वों का आवर्त वर्गीकरण (Periodic classification of elements)

      तत्वों का आवर्त वर्गीकरण (Periodic classification of elements) आवर्ती वर्गीकरण ( Periodic Classification):  किसी मौलिक गुण को आधार बनाकर की गई पदार्थों की ऐसी व्यवस्था जिसमें निश्चित अंतराल के बाद समान गुण वाले पदार्थ पुनः उपस्थित हों, आवर्ती व्यवस्था या आवर्ती वर्गीकरण कहलाती है। तत्वों के वर्गीकरण का मुख्य उद्देश्य समान गुणों वाले तत्वों को एक वर्ग में रखकर रसायनशास्त्र के अध्ययन को सरल, सुविधाजनक, सुस्पष्ट एवं क्रमबद्ध बनाना है। तत्वों के वर्गीकरण का इतिहास:   19वीं शताब्दी में तत्वों के वर्गीकरण के कई प्रयास किये गए जिनमें प्राउट की परिकल्पना, डोबरेनर का त्रिक सिद्धांत, डूमा की सममूलक श्रेणी, न्यूलैण्डस का अष्टक नियम, लोथर-मेयर का परमाणु आयतन तथा परमाणु भार वक्र, मेडलीफ का आवर्त नियम आदि प्रमुख हैं। तत्वों के वर्गीकरण के इन प्रारम्भिक प्रयासों में तत्वों के परमाणु भार (Atomic weight) को वर्गीकरण का आधार बनाया गया। लेकिन  डोबरेनर  का  त्रिक सिद्धांत  कुछ ही तत्वों तक सीमित रहने के कारण विश्वव्यापी मान्यता प्राप्त नहीं कर सका। अतः कुछ समय पश्चात् तत्वों के वर्गीकरण की यह पद्धति त्य

    अम्ल, क्षार एवं लवण (Acids, Bases and Salts)

      अम्ल, क्षार एवं लवण (Acids, Bases and Salts) किसी भी भोजन का अच्छा स्वाद हमारे जिंदगी को भी स्वादिष्ट बना देता है। सभी प्रकार के भोजन में कोई न कोई taste अवश्य होता है। ये स्वाद या तो खट्टे, मीठे या नमकीन होते हैं। भोजन में खट्टेपन का स्वाद उसमें Acid की उपस्थिति के कारण होता है, जबकि भोजन का नमकीन स्वाद उसमें उपस्थित Salt के कारण होता है। Cold drinks का bitter स्वाद उसमें उपस्थित Base के कारण होता है। अर्थात भोजन का तरह तरह का स्वाद उसमें acid, salt, या base की उपस्थिति के कारण होता है। Acids (अम्ल) Acids का स्वाद खट्टा (sour) होता है। इसी कारण भोजन या फल का स्वाद खट्टा होने का कारण उसमें acids की मौजूदगी के कारण होता है। Example (उदाहरण): Lemon (नींबु), curd (दही), tamarind (ईमली), unripe fruits (कच्चे फल) आदि कुछ सामान्य भोज्य पदार्थ हैं, जो प्राय: रोज घरों में उपयोग किये जाते हैं। इन सभी का स्वाद खट्टा होता है क्योंकि इन सभी में acid (अम्ल) पाये जाते हैं। रासायनिक पदार्थ जिन्हें उनके खट्टे स्वाद के कारण पहचाना जा सकता है, अम्ल (ACID) कहलाते हैं। Types of Acids: (अम्ल के प्रकार) श

    रासायनिक बंधन क्या होता है ? यहाँ जाने | what is Chemical bond ? Know here

      रासायनिक बंधन (Chemical bond) किसी अणु में परमाणुओं को बांधकर एक साथ रखने वाले बल को रासायनिक बंधन (Chemical bonding) कहते हैं जैसे हाइड्रोजन के दो परमाणु ऑक्सीजन की एक परमाणु के साथ रासायनिक बंध द्वारा जुड़कर जल का निर्माण करता है। रसायनिक बंधन की व्याख्या 1916 में Walther Kossel और Gilbert N. Lewis के द्वारा किया गया। Chemical Bond तीन प्रकार के होते होते हैं 1. विद्युत संयोजक बंध (Electrovalent bond) दो परमाणुओं के मध्य इलेक्ट्रॉन की स्थांतरण से बने बंध को electrovalent bond कहते हैं। यह विद्युत संयोजक बंधन और ऋण आवेश से बने होते हैं, द्रवणांक और क्वथनांक उच्च होता है, विद्युत आकर्षण बल से जुड़े होते हैं, ठोस अवस्था में विद्युत का कुचालक होते हैं विद्युत संयोजक बंध दिशाहीन होते हैं, जल में घुलनशील होते हैं, परंतु कार्बनिक घोल में अघुलनशील होते हैं तथा बहुत ही तेजी से रासायनिक अभिक्रिया में भाग लेते हैं। 2. सहसंयोजक बंध ( Covalent bond ) ऐसा रसायनिक बंधन जिनका निर्माण दो परमाणुओं के बीच इलेक्ट्रॉन के साझेदारी के कारण होता है उन्हें co-valent bond कहते हैं। जब दो परमाणुओं के बीच परम

    रसायन विज्ञान का अर्थ (Meaning of chemistry)

                    रसायन विज्ञान (केमिस्ट्री) विज्ञान की वह शाखा है जिसके अंतर्गत पदार्थों के गुण, संघटन, संरचना और उनमें होने वाले परिवर्तनों का अध्ययन किया जाता है. केमिस्ट्रीअर्थात रसायन विज्ञान शब्द की उत्पत्ति मिस्र के प्राचीन शब्द कीमिया से हुई जिसका अर्थ है काला रंग. मिश्र के लोग काली मिट्टी को केमी कहते थे और प्रारंभ में रसायन विज्ञान के अध्ययन को केमीटेकिंग कहा जाता था. Lavoisier को रसायन विज्ञान का जनक कहा जाता है

    उत्प्रेरक क्या है? what is Catalyst ?

      उत्प्रेरक क्या है? what is Catalyst ? उत्प्रेरक का अर्थ या परिभाषा: उत्प्रेरक उस पदार्थ को कहते हैं जो किसी रासायनिक क्रिया के वेग को बदल दे, परंतु स्वयं क्रिया के अंत में अपरिवर्तित रहता है, अत: उसे पुन: काम में लाया जा सकता है। अधिकांश क्रियाओं में उत्प्रेरक प्रतिक्रिया की गति को बढ़ा देता है। ऐसे उत्प्रेरकों को धनात्मक उत्प्रेरक कहते है; परंतु कुछ ऐसे भी उत्प्रेरक है जो रासायनिक क्रिया की गति को मंद कर देते हैं। ऐसे उत्प्रेरक ऋणात्मक उत्प्रेरक कहलाते हैं। औद्योगिक रूप से महत्वपूर्ण रसायनों के निर्माण में उत्प्रेरकों की बहुत बड़ी भूमिका है क्योंकि इनके प्रयोग से अभिक्रिया की गति बढ जाती है जिससे अनेक प्रकार से आर्थिक लाभ होता है और उत्पादन तेज होता है। इसलिये उत्प्रेरण के क्षेत्र में अनुसंधान के लिये बहुत सा धन एवं मानव श्रम लगा हुआ है। उत्प्रेरक की मुख्य विशेषताएँ निम्नलिखित हैं: क्रिया के अंत में उत्प्रेरक अपरिवर्तित बच रहता है। उसके भौतिक संगठन में चाहे जो परिवर्तन हो जाएँ, परंतु उसके रासायनिक संगठन में कोई अंतर नहीं होता। उत्प्रेरक पदार्थ की केवल थोड़ी मात्रा ही पर्याप्त होती ह

    रसायन विज्ञान की महत्वपूर्ण प्रश्न उत्तर (Important Chemistry Questions)

      रसायन विज्ञान की महत्वपूर्ण प्रश्न उत्तर  (Important Chemistry Questions) 1. आतिशबाजी में हरा रंग किसकी उपस्थिति के कारण होता है. उत्तर. बेरियम 2. कौन-सी धातु रोशनी के बल्बों के फिलामेंट के रूप में प्रयुक्त होती है . उत्तर. टंगस्टन 3. सामान्य ट्यूबलाइट (प्र्तिदिप्ती बल्ब ) में ऑर्गन के साथ कौन-सी गैस भरी जाती है . उत्तर. मरकरी वेपर 4. संस्पर्श प्रक्रम में किसको एक उत्प्रेरक के रूप में प्रयोग किया जाता है . उत्तर. वैनेडियम पेंटाक्साइड 5. कृतकनाशी (रोडेंटनाशी) में किसका प्रयोग किया जाता है . उत्तर. जिंक फॉस्फाइड 6. क्लोरीन हैलोजन सदस्य का उपयोग किसके रूप में होता है. उत्तर. कीटाणुनाशक 7. किस विधि द्वारा औद्योगिक पैमाने पर अमोनिया का उत्पादन किया जाता है. उत्तर. हैबर विधि 8. किसने सर्वप्रथम आवर्त सारणी का निर्माण किया. उत्तर. मेंडेलीफ वैज्ञानिक 9. नाभिक से निकलने वाले विकिरणों में किसकी वेधन क्षमता सर्वाधिक होती है. उत्तर. गामा किरणों 10. फोटोग्राफी में किस योगिक प्रयोग किया जाता है. उत्तर. सिल्वर ब्रोमाइड रासायनिक 11. कृत्रिम वर्षा कराने में किसका प्रयोग किया जाता है. उत्तर. सिल्वर आयो